

Дополнение к § 1

) 1.5. Особенности колебаний нелинейного осциллятора

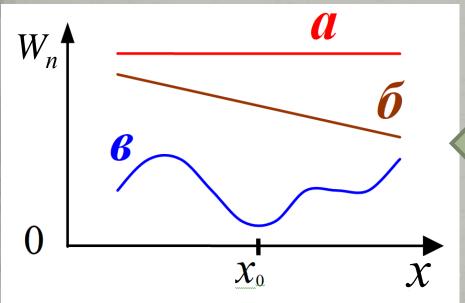
1.5.1. Линейный осциллятор – гармонический осциллятор (или откуда берутся гармонические колебания?)

$$\ddot{\xi} + \omega_0^2 \cdot \xi = 0$$

А как это так получается?

$$F \sim x$$
 ??

Система консервативна ⇒



$$F_x = -\frac{n}{dx}$$

$$\Rightarrow W_n \sim x^2$$
, пружина $W_n(x) = \frac{kx^2}{2}$

A если $W_n(x)$ – сложная функция ?

$$x - x_0 \equiv \xi - «малый аргумент»$$

Разложим в ряд

$$W_n(x) = W_n(x_0) + \frac{dW_n}{dx}\bigg|_{x=x_0} \cdot (x-x_0) + \frac{1}{2} \frac{d^2W_n}{dx^2}\bigg|_{x=x_0} \cdot (x-x_0)^2 + \dots$$

$$W_n(\xi) = U(0) + \frac{dW_n}{dx} \bigg|_{\xi=0} \cdot \xi + \frac{1}{2} \frac{d^2 W_n}{dx^2} \bigg|_{\xi=0} \cdot \xi^2 + \dots$$

$$\xi$$
 мало! Тогда: $W_n(\xi) \approx W_n(0) + \frac{1}{2} \frac{d^2 W_n}{dx^2} \Big|_{\xi=0} \cdot \xi^2 = W_n(0) + \frac{k\xi^2}{2}$

Ho: $F_x = -\frac{dW}{dx}$ и тогда $F_x = -k\xi$ $k = \frac{d^2 W_n}{dx^2}$

$$Ho: F_x = -\frac{dW}{dx} u mor \partial a$$

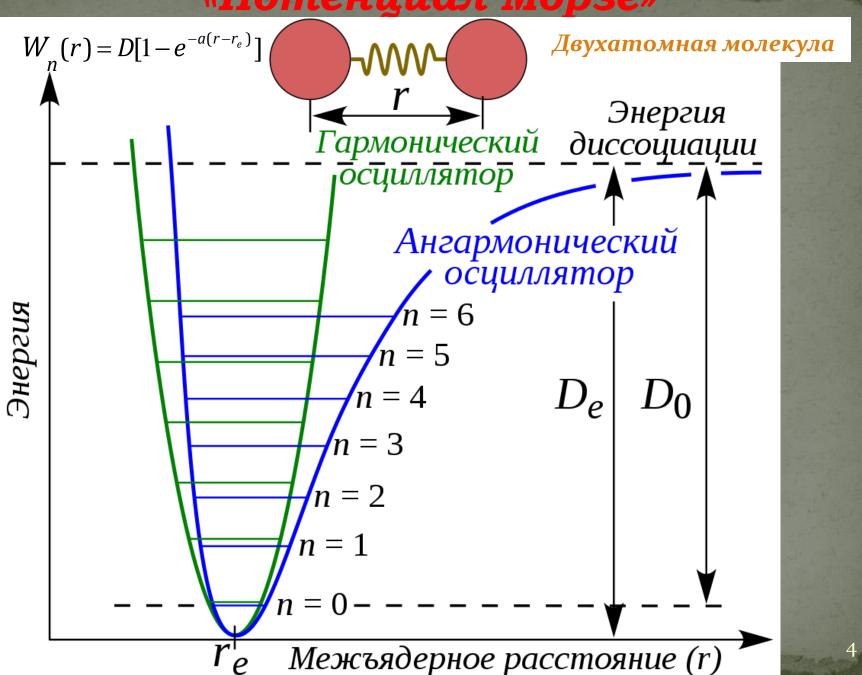
$$F_{x} = -k\xi$$

«Возвращающая сила», линейный, гармонический осциллятор!!!

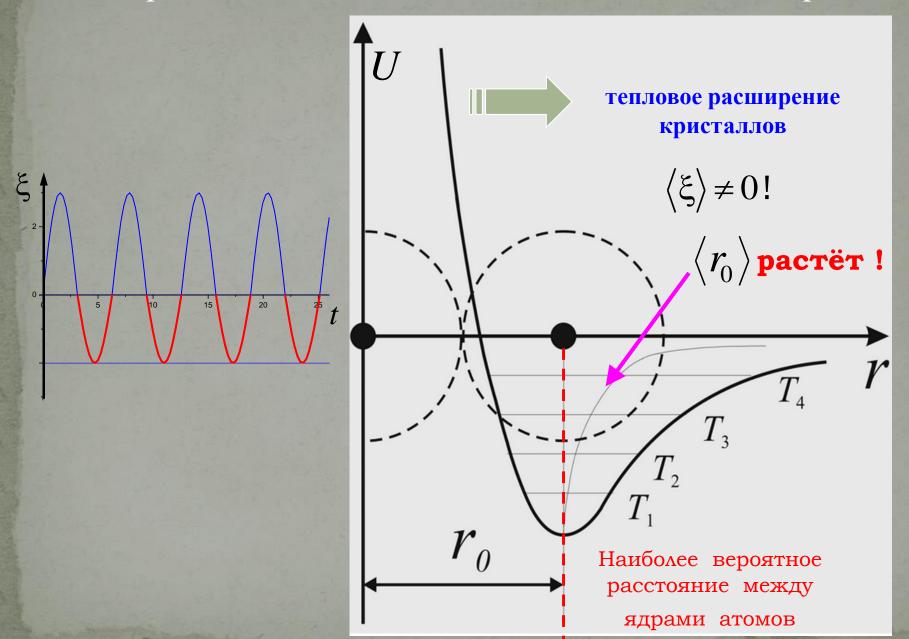
A если $W_n(\xi)$ не пропорциональна ξ^2 ?

Примеры: "Потенциал Морзе", ... ("Леннард-Джонса" (6/12), "Бакингема", ...)

«Потенциал Морзе»



• Ангармонизм колебаний нелинейного осциллятора



1.5.2. Нелинейный («ангармонический») осциллятор

ξ растёт ⇒ нельзя «аппроксимировать параболой»

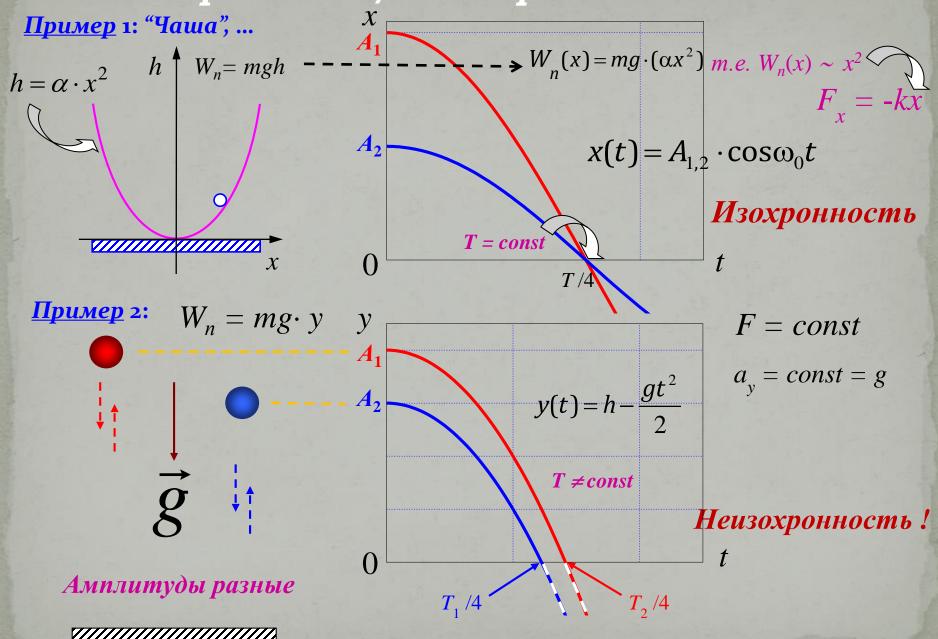
$$\ddot{\xi} + f(\xi) = 0 \qquad f(\xi) = k \cdot \xi + k_2 \cdot \xi^2 + k_3 \cdot \xi^3 + \dots$$

$$\xi(t) = A_1 \cdot \cos(\omega_0 t + \varphi_0) + A_2 \cdot \cos(2\omega_0 t + \varphi_{02}) + A_3 \cdot \cos(3\omega_0 t + \varphi_{03}) + \dots$$

Ангармонизм

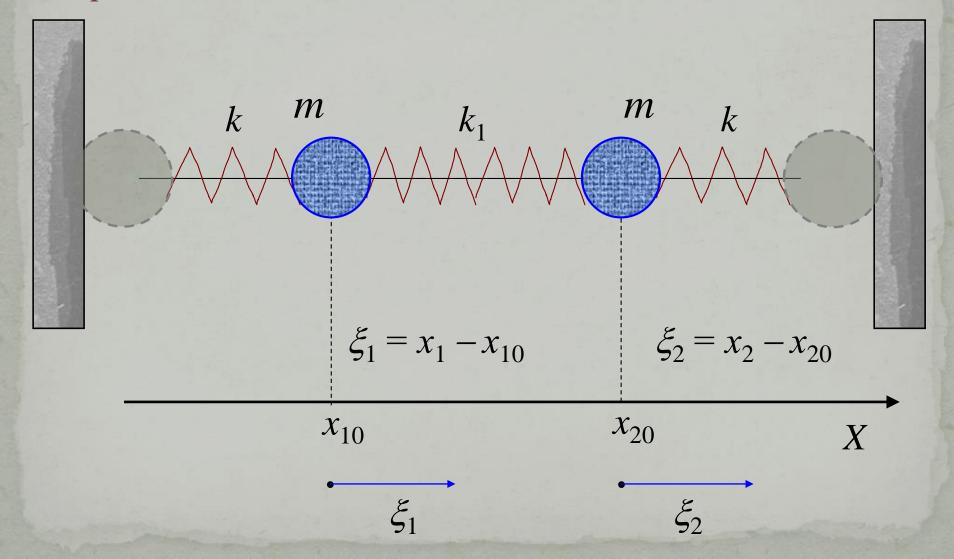
Неизохронность

Изохронность / Неизохронность



§ 2. Свободные колебания в системе связанных осцилляторов. (о "модах"...) Колебания молекул

- 2.1. Симметричная система двух связанных осцилляторов.
- Нормальные колебания



Модель:

- Крайние атомы неподвижны, а «средние» одинаковы;
- Одномерный случай;
- Система консервативна трения нет;
- Все связи квазиупругие взаимодействуют линейные осцилляторы. Средняя пружинка моделирует связь осцилляторов:

Система уравнений и её решение:

• (<u>Onp</u>.) Нормальными координатами называются линейные комбинации исходных координат, которые позволяют свести систему уравнений к системе уравнений гармонических осцилляторов

Частоты нормальных колебаний (мод)

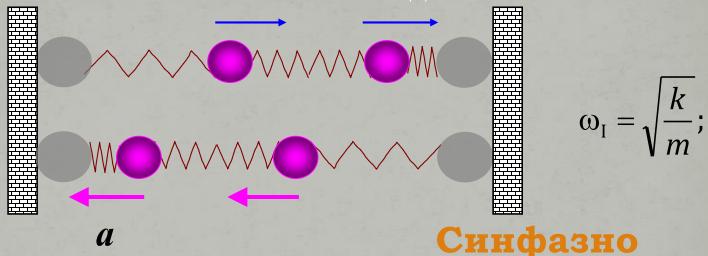
$$\omega_{\rm I} = \sqrt{\frac{k}{m}}$$

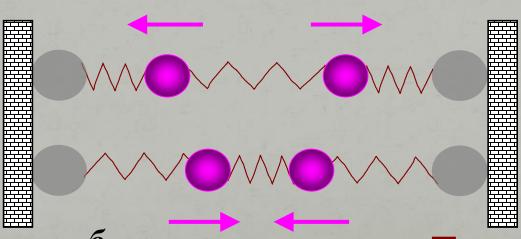
$$\omega_{\rm I} = \sqrt{\frac{k}{m}}; \qquad \omega_{\rm II} = \sqrt{\frac{k + 2k_1}{m}}$$

А что же это за «моды» такие, и как движутся сами атомы

Симметричная система связанных осцилляторов

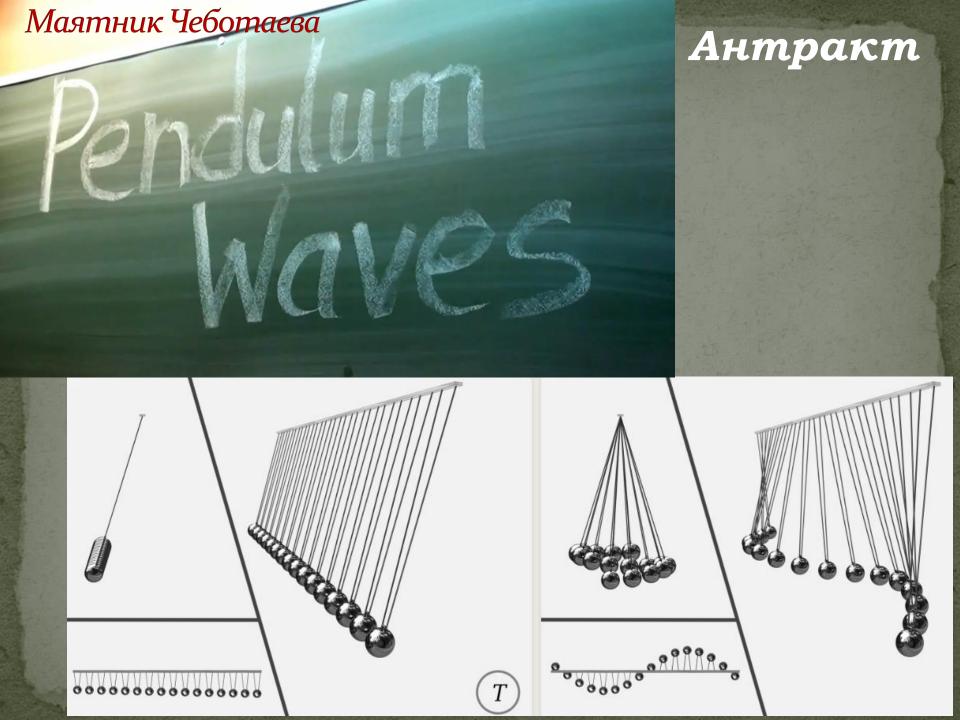
"Нормальные колебания" ≡ "Моды"





$$\omega_{\rm II} = \sqrt{\frac{k + 2k_1}{m}}$$

Противофазно



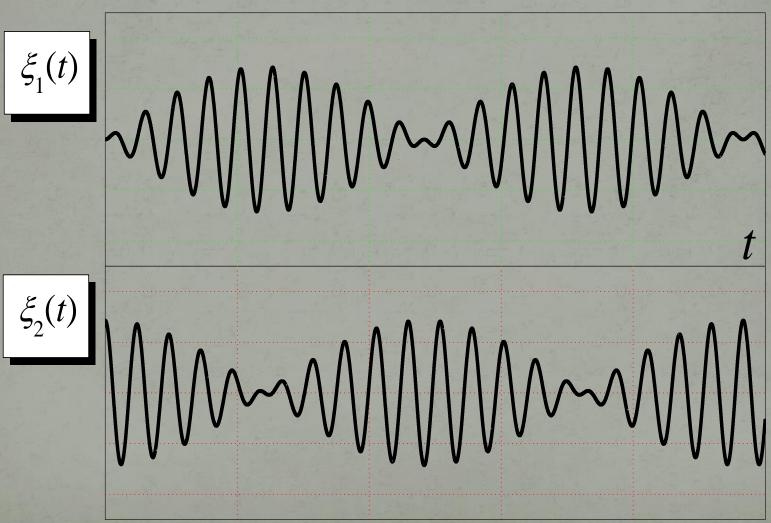
Антракт

Замечания: 1) Симметричная система со слабой связью $k_1 << k_2$ "Биения"

2) Моды энергетически независимы!!

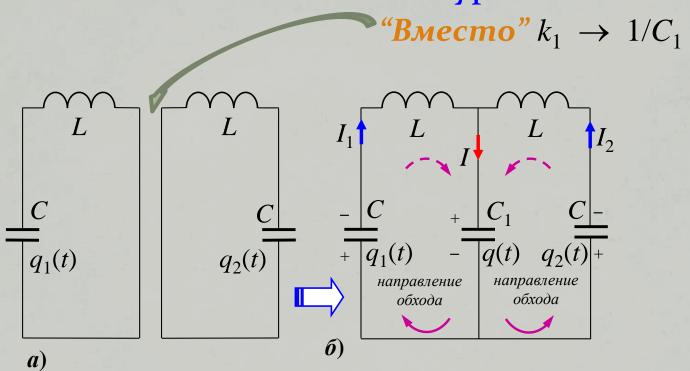
3) Несимметричные системы

• 3амечания: 1) Симметричная система со слабой связью $k_1 << k_2$



2.2. Связанные колебательные контуры

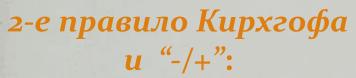
• «Ёмкостная связь» контуров



a) Два одинаковых контура и *б*) Контуры с ёмкостной связью.

2.2. Связанные колебательные контуры

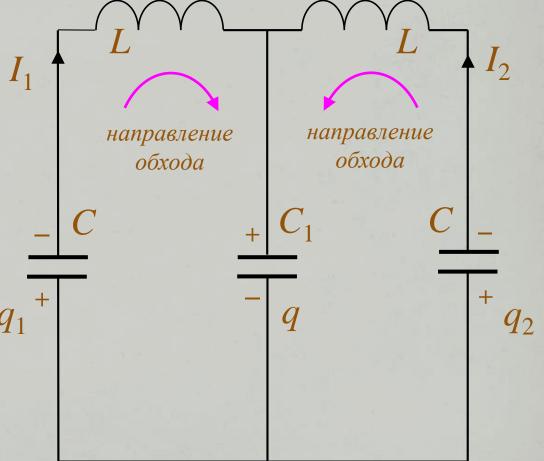
• Ёмкостная связь контуров



$$q_{\rm I}$$
: $\omega_{\rm I} = \frac{1}{\sqrt{LC}}$

Синфазно

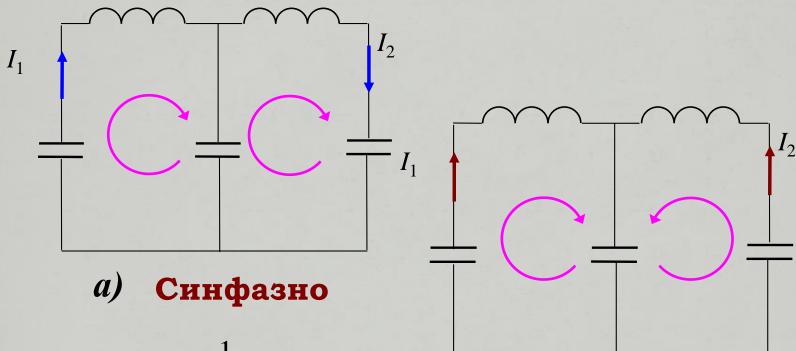
$$q_{\text{II}}: \omega_{\text{II}} = \sqrt{\frac{1}{L}\left(\frac{1}{C} + \frac{2}{C_1}\right)}$$



Противофазно

Связанные электрические контуры

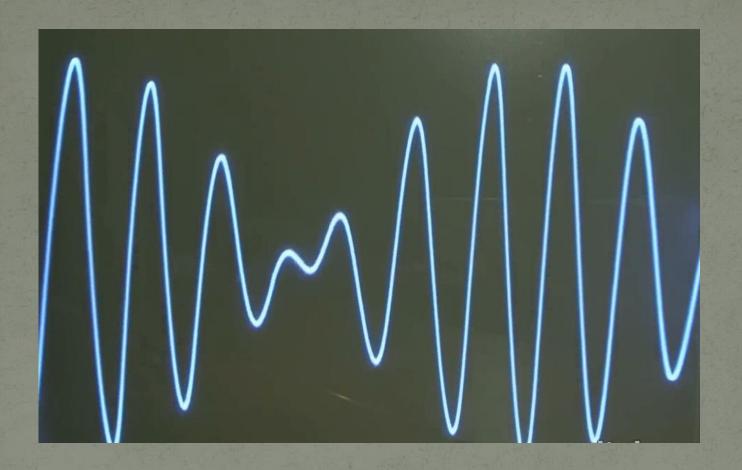
• Ёмкостная связь контуров



$$\omega_{\rm I} = \frac{1}{\sqrt{LC}}$$

$$\omega_{\text{II}} = \sqrt{\frac{1}{L} \left(\frac{1}{C} + \frac{2}{C_1} \right)}$$

Биения для связанных электрических контуров



2.3. Колебания молекул

(колебательная/молекулярная спектроскопия)

2.3.1. Двухатомная молекула

Внутримолекулярные колебания свободной двухатомной молекулы (Модель «гармонический осциллятор» в химии)

Задачи 2.3 – 2.5:
$$\xi = x_2 - x_1 - l_0$$

$$\xi = x_2 - x_1 - l_0$$

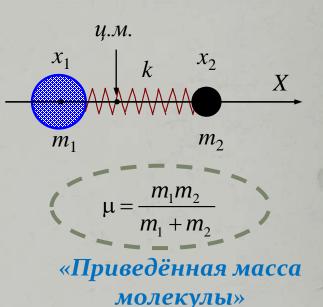
 $\omega_0 = \sqrt{\frac{k}{\mu}}$

А где её можно "увидеть"??

Пример 1. Изотопные сдвиги в колебательных спектрах

$$\frac{\omega_0^{OH}}{\omega_0^{OD}} = \sqrt{\frac{\mu_{OD}}{\mu_{OH}}} = \sqrt{\frac{m_D(m_O + m_H)}{m_H(m_O + m_D)}} \approx 1,37$$

Пример 2. Свободные и связанные гидроксилы



$$\frac{\omega_0^{c_{BOG}}}{\omega_0^{c_{BSS}}} = \sqrt{\frac{(m_O + m_H)}{m_O}} \approx 1,031$$

2.3.2. Многоатомные молекулы. Колебательные степени свободы

молекул: 3N-6/3N-5

Колебания молекул H_2O

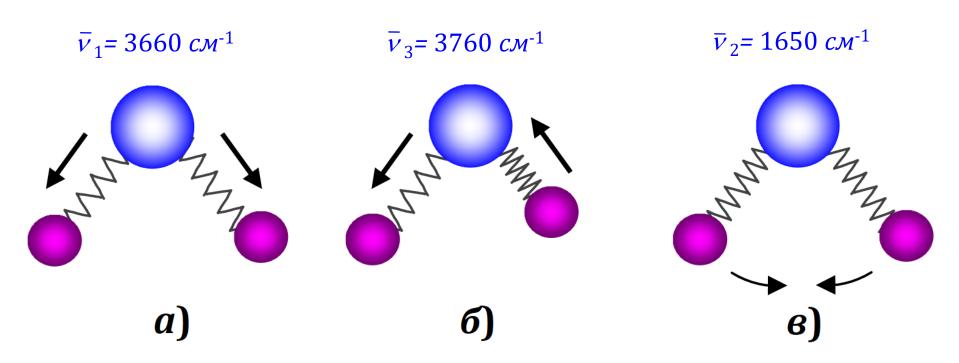


Рис. 2.7. Валентные (а и б) и деформационные (в) моды молекул H_2O

Молекулярная / Колебательная спектроскопия :

- 1) Инфаракрасного поглощения света (ИК-спектроскопия)

 IR-Spetroscopy
- **2)** Комбинационного **рассеяния** света (KP-спектроскопия ≡ "Рамановская") Raman Spetroscopy

продолжение ...

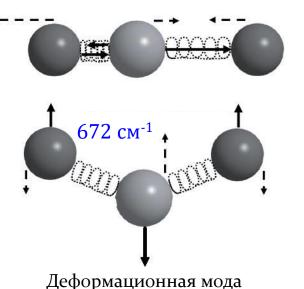
2.3.2. Многоатомные молекулы. Колебательные степени свободы молекул: 3N-6/3N-5

Линейные молекулы (СО₂)

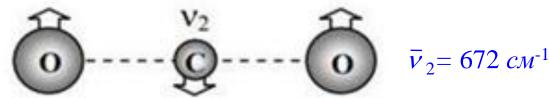
Симметричная мода 1351 см-1

Антисимметричная мода

2396 см-1



$$\bar{v}_1 = 1351 \text{ cm}^{-1}$$



 $\bar{\nu}$? в спектроскопии: "Частота" / "Волновое число". $\bar{\nu}$ = 1/ λ

$$\langle \overline{v}_3 = 2396 \ cm^{-1} \rangle$$

Три фундаментальные моды молекулы CO_2 :

 v_1 - Симметричная валентная мода;

 v_2 - деформационная мода

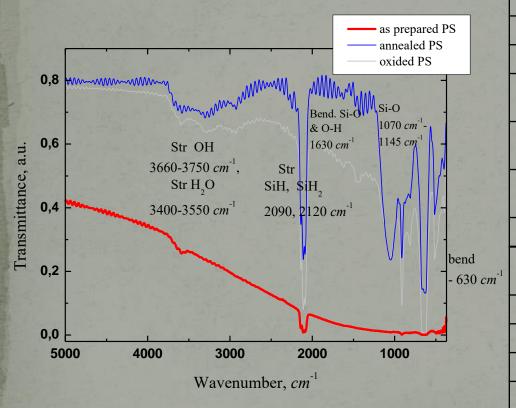
 v_3 - антисимметричная валентная мода;

Молекулярная колебательная спектроскопия



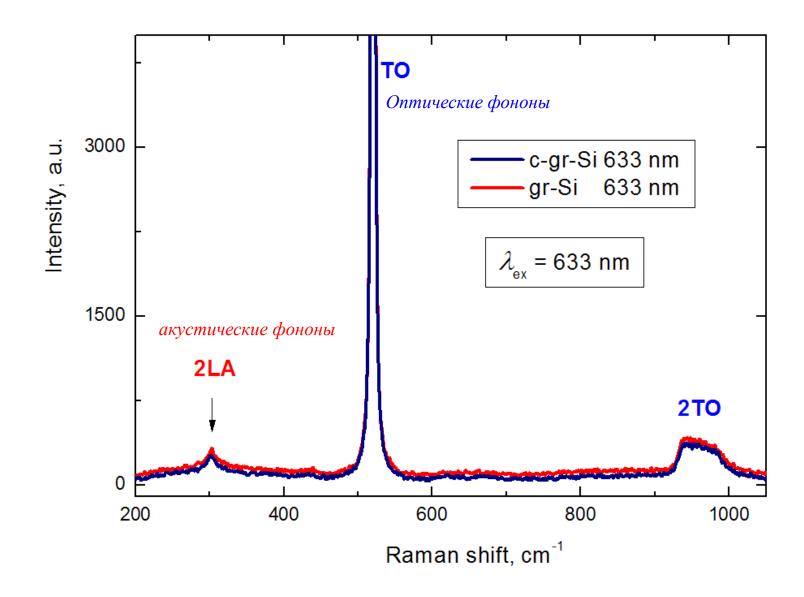
ИК спектроскопия

The infra-red (IR) spectroscopy of porous silicon

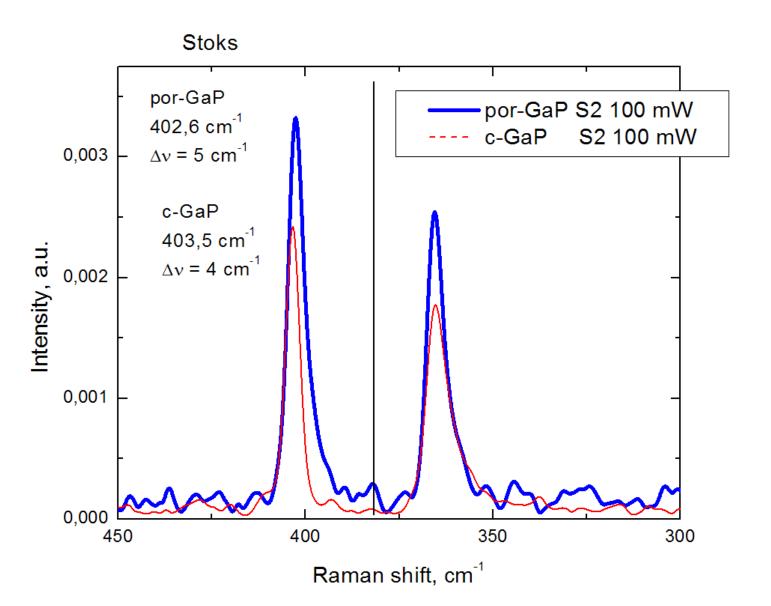


Absorption line, (cm ⁻¹)	Types of vibration mode
3745	Si-OH
3610	O–H stretching vibrations (in SiOH)
3452	O–H stretching vibrations (in H ₂ O)
2958	C–H stretching vibrations (in CH ₃)
2927	C–H stretching vibrations (in CH ₂)
2856	C–H stretching vibrations (in CH)
2197	Si–H stretching vibrations (in SiO ₂ –SiH)
2140	Si-H ₃ stretching vibrations (in SiH ₂ -SiH)
2116	Si-H ₂ stretching vibrations (in Si ₂ H-SiH)
1720	C=O
1056-1160	Si–O stretching vibrations (in Si–O–Si и C–Si–O)
980	Si–F stretching vibrations
979	Si–H bending vibrations (in Si ₂ H–SiH)
950	Si–F stretching vibrations
948	Si–H bending vibrations (in Si ₂ H–SiH)
827	Si-O bending vibrations (in Si-O-Si)
800	Si-CH ₃
624	Si–H bending vibrations (Si ₃ –SiH)
617	Si–Si

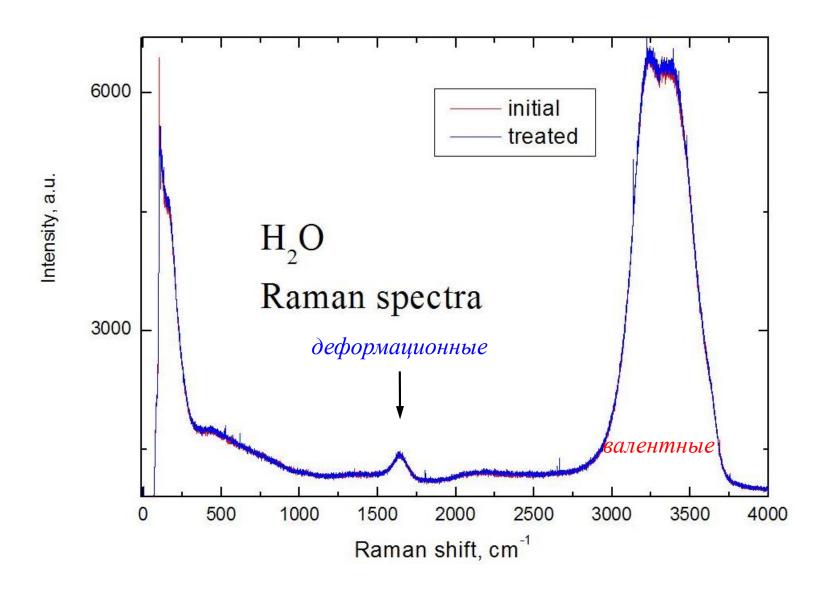
Спектры комбинационного рассеяния света с-Si



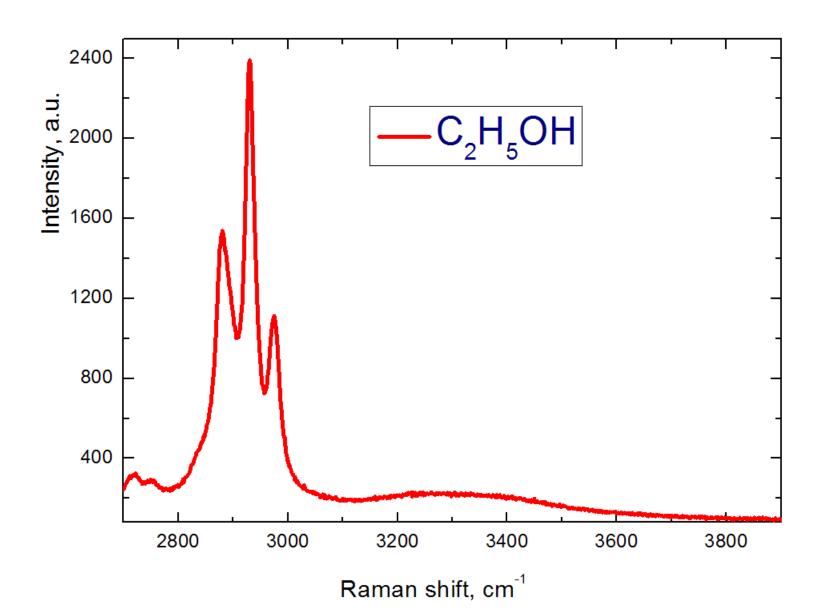
Спектры КРС арсенида галлия (GaP)



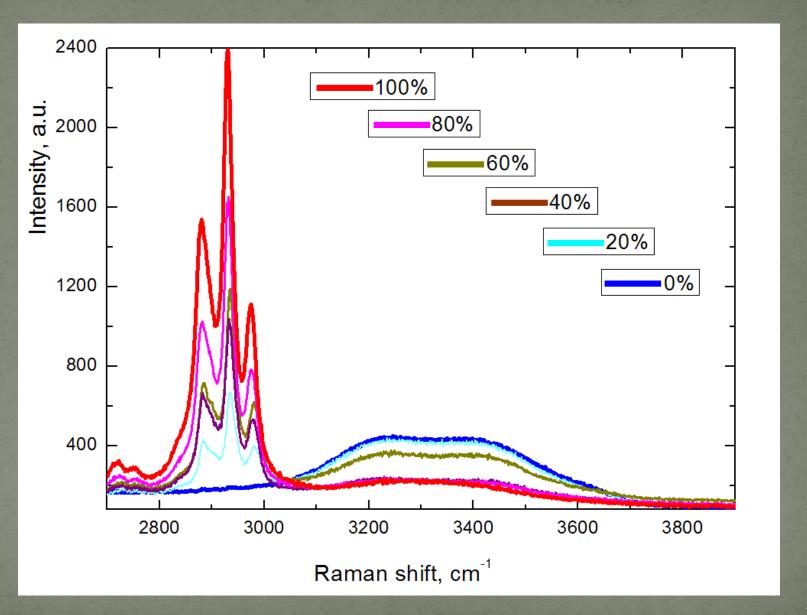
Спектр комбинационного рассеяния света воды



Спектр комбинационного рассеяния света



Спектры комбинационного рассеяния света



$$\frac{3}{3} = \frac{3}{3}, + \frac{3}{3}z$$

$$\frac{3}{2} = \frac{3}{2}z - \frac{3}{3}z + \frac{3}{2}z$$

$$\frac{3}{2}z + \frac{3}{2}z + \frac{3}{2$$

$$\begin{cases}
-L \frac{dI_1}{dt} = \frac{Q_{1}}{C} + \frac{Q}{C_{1}}; & -\tilde{q}_{1} = \frac{1}{LC} q_{1} + \frac{1}{Lc_{1}} q_{2} \\
-\tilde{g}_{2} = \frac{1}{Lc} q_{2} + \frac{1}{Lc_{1}} q_{2} \\
-L \frac{dI_{2}}{dt} = \frac{Q_{2}}{C} + \frac{Q}{C_{1}}; \\
Q = Q_{1} + Q_{2}; I_{1} = \frac{dQ_{1}}{dt} = \tilde{q}_{1}; I_{2} = \frac{dq_{2}}{dt} = \tilde{q}_{2}
\end{cases}$$