
Лекция 3 
Осциллятор  с  затуханием



mk

Xx2

Уже было, но мы повторим :

x1

km

Задача 3.11



3.1. Дифференциальное уравнение для осциллятора с затуханием

Рис. 1. Пружинный маятник в вязкой среде
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Рис. 2. Контур с затуханием
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 < 0
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3.2. Малое затухание:

Вид решения:
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“Собственная частота 
затухающих колебаний”
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Что тут нового?



 < 03.2. Малое затухание:

Демо  1:    “Песочный  осциллограф”

Демо  2:    Затухание в контуре
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 http://somit.ru/roliki/fizm_z.swf

r = 0,1 кг/c

Пружинный маятник
в воде  

Параметры  

http://somit.ru/roliki/fizm_z.swf


Малое затухание:  < 0

а) r = 0,02 кг/cx,ед.

t,c

б) r = 0,20 кг/c

t,c

x,ед.



• Время релаксации амплитуды A :

 Количество колебаний Ne :

• Декремент затухания – величин, равная отношению амплитуд двух

последовательных колебаний:

 Логарифмический декемент затухания :

 A = 1/

• Коэффициент затухания  :
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 график lnA = f(t)
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3.3. Характеристики осциллятора с малым затуханием
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3.4. Добротность колебательной системы















2
: 0

0
Q
















2

c

c
T

QА ещё:

Нельзя ли без  ? Вместо числа «е» подберём число «k»:  

так, чтобы ln(k) =  k = 23 23
NNNQ

ke
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А какие  бывают   добротности ?
1) Земная кора - сейсмические волны – Q  101  103 ;
2) «Маятники», …, струна, …, камертон, …  Q  101  104;
3) «колебательный контур» …                  Q  102

4) пьезо-керамика, пьезокварц   Q  105  106;
4) «СВЧ – резонаторы», …, оптические резонаторы, …    Q  104  107 ;
5) Молекулы, атомы …, ядра атомов …,                  Q  104  107  1012 ;

…  
А ещё: Система «Лектор – аудитория» Д.З. : Q = ??? 

Зам. …



СПОСОБЫ  НАЙТИ  добротность:
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0подсказка:Д.З. Докажите это!
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Wп + Wк= const

Уже было (Rem):
Энергия гармонического 

осциллятора  

)ωcos()(ξ 00  tAt

А  W(t)  осциллятора 
с малым затуханием

??

3.5. Энергия затухающих колебаний 



Энергия W(t):
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Итог для W       … см. рис. на след. слайде

Ещё про “Добротность” … 

:
0

При условии  



(Опр.) Добротность пропорциональна отношению
энергии, запасённой осциллятором, к энергии,
теряемой за период при свободных колебаниях

… и ещё: 
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Энергия осциллятора с малым затуханием

1 - потециальная энергия

2 - кинетическая энергия

3 - Полная энергия осциллятора с малым затуханием
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«малые пульсации W(t)



 > 0

“Большое затухание”

другой вид решения:

3.6. Осциллятор с большим затуханием. Релаксация
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3.6. Осциллятор с большим затуханием. Релаксация

Маятник «в масле»:     

Маятник «в масле»:     



Большое затухание:
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Критический  режим  осциллятора:  = 0

Вид решения:

a) (0) = А= 0;
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“баллистические 
приборы”
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1) Число мод = …

2) Разная добротность мод  спектры …

3) Энергетическая независимость мод … 
… искажения «гармоничности мод» … 
появление «гармоник»

4) Большое затухание – «моды исчезают» 
… 

3.7. Особенности затухающих колебаний в системе 
связанных осцилляторов



Глава II. Вынужденные колебания

1.1. Дифференциальное  уравнение  для  вынужденных  колебаний

Убыль надо восполнять 

Энергия осциллятора 
с затуханием

teWtW  2

0
)( !

Свободные 

Затухающие

(t)

)(t

Rem :

1 - потециальная энергия

2 - кинетическая энергия

3 - Полная энергия осциллятора с затуханием
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Итог:

К  выводу  уравнения 

вынужденных  колебаний

f0 = F0/m или   u0/L
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Свободные:

1.2. Вид решения дифференциального уравнения для вынужденных колебаний

Установившиеся вынужденные 
колебания (у.в.к.)

Но при  t >> A = 1/ :

A амплитуда установившихся вынужденных колебаний;

 - сдвиг фаз у.в.к.

 - частота у.в.к.;

Математика: “общее однородного + частное неоднородного”

+ “частное”

0

t

И останутся:

Замечания:
1) у.в.к.;
2) ;
3) “”

4) A и   - ??
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Доска 1
Приложение
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Доска 2
Приложение



Доска 3
Приложение


