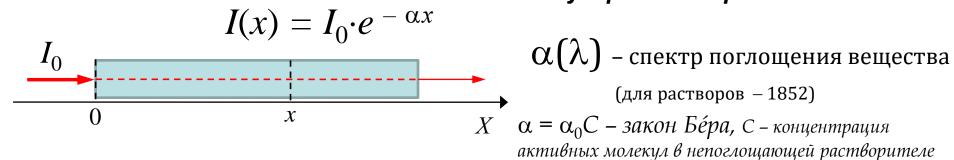
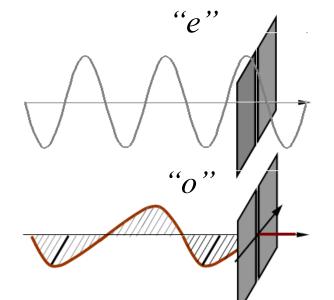
Лекция 14. Поляризация света в анизотропной среде.

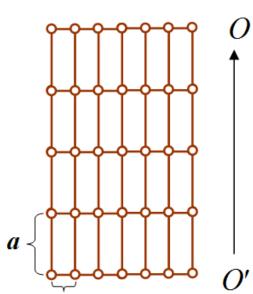



§3. Поляризация света в анизотропной среде — продолжение

3.2. Поляризация при избирательном поглощении

a) поглощения света веществом

(Пьер Буге́р – 1729) **закон Буге́ра–Ла́мберта**

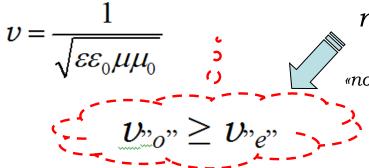

«Всё вместе» ≡ закон Буге́ра-Ла́мберта-Бе́ра

б) избирательное поглощение

Дихроизм кристаллов — различное поглощение света с разным направлением вектора \vec{E} , т.е. с разной поляризацией

Турмалин – сложный алюмосиликат

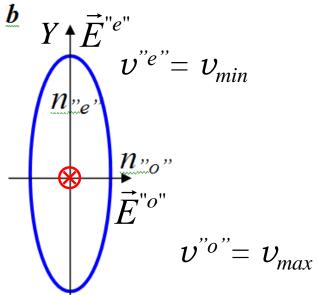
3.3. Понятие о природе двулучепреломления света

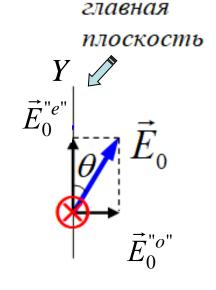


$$a > b = c$$

B этом направлении больше поляризуемость среды $\Rightarrow \varepsilon$

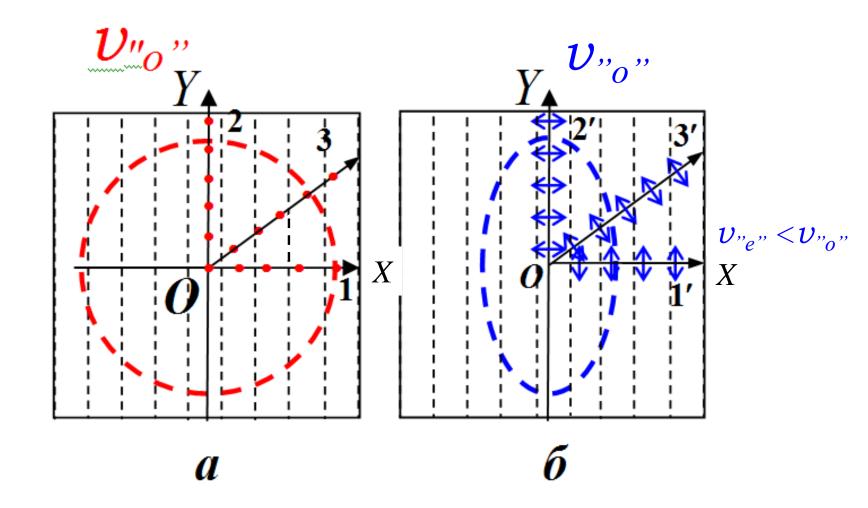
для анизотропного кристалла

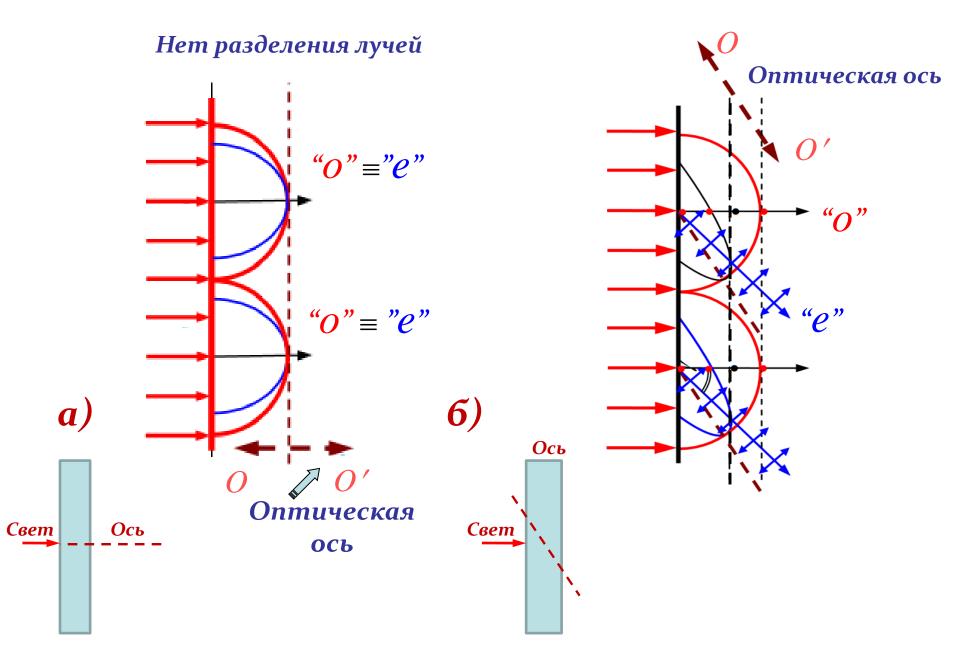

зависит от направления поля



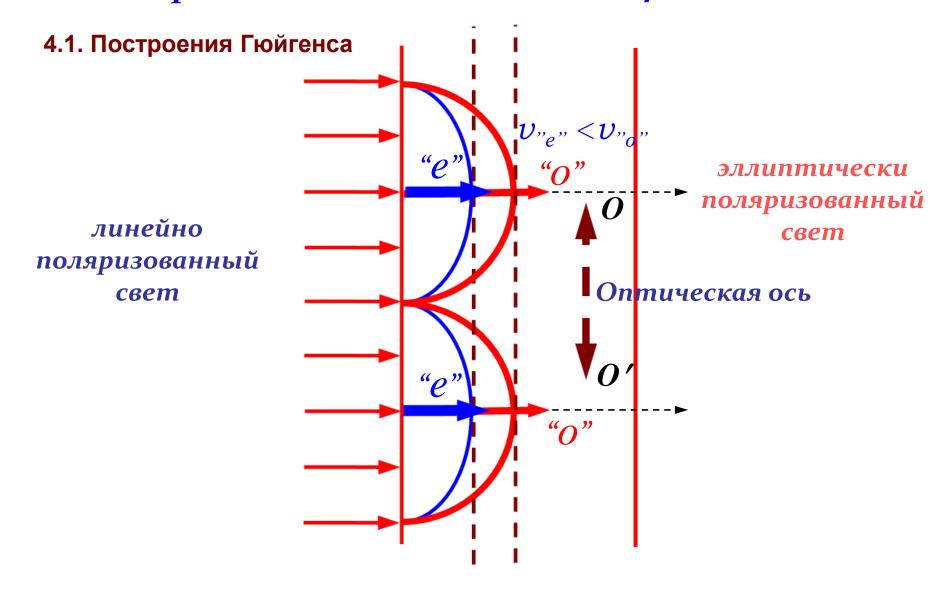
$$n = \sqrt{\varepsilon \mu}$$
 $v = \frac{c}{n}$

«положительный кристалл»

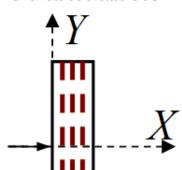

(кварц)



$$E_0^{"e"} = E_0 \cdot \cos \theta$$
$$E_0^{"o"} = E_0 \cdot \sin \theta$$


Распространение поляризованных волн от точечного вторичного источника в анизотропной среде

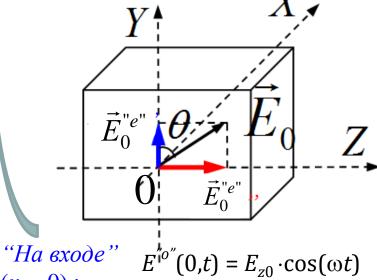
3.4. Возникновение двух лучей



§4. Получение и анализ эллиптически поляризованного света. Кристаллические пластинки " $\lambda/4$ " и " $\lambda/2$ "

4.2. Кристаллические пластинки " $\lambda/4$ " и " $\lambda/2$ "

Ha выходе (x = h):


$$E^{"o"}(h,t') = E_{z0} \cdot \cos(\omega t')$$

$$E^{"e"}(h,t') = E_{v0} \cdot \cos(\omega t' - \delta)$$

$$\delta = \frac{2\pi}{\lambda} \cdot \Delta$$

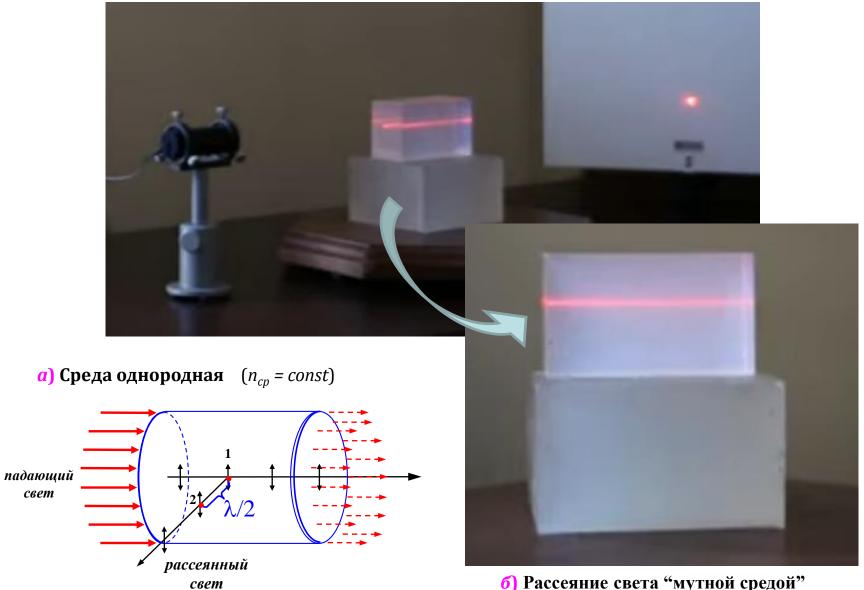
$$\Delta = (n_e - n_o) \cdot h$$

(x = 0):

 $E^{"e"}(0,t) = E_{v0} \cdot \cos(\omega t)$

1)
$$\Delta = \lambda/4 \implies \delta = \pi/2$$

2)
$$\Delta = \lambda/2 \implies \delta = \pi$$


Кристаллические пластинки "λ/4", "λ/2", ...

Уравнения
$$E''o''(h,t') = E_{z0} \cdot \cos(\omega t')$$
 Эллипса: $E''e''(h,t') = E_{y0} \cdot \cos(\omega t' - \delta)$

Δ	$m\lambda_0$	$\lambda_0 / 8$	$\lambda_0/4$	$3\lambda_0/8$	$\lambda_0/2$
δ	$2m\pi$	$\pi/4$	$\pi/2$	$3\pi/4$	π
	Z				

^{* («}смотрим навстречу лучу»)

§5. Поляризация при рассеянии света

 σ) Рассеяние света "мутной средой" $n_{cp} = n(x, y, z)$

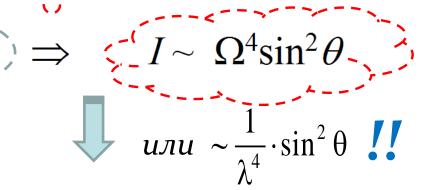
5.1. Особенности излучения диполя

$$B = \frac{\mu_0}{4\pi} \frac{J \cdot \delta l \cdot \sin \theta}{r^2};$$
 \Rightarrow \vec{B} $\xi(t) = A\cos(\Omega t - \alpha)$ $\xi(t) = A\cos(\Omega t - \alpha)$ $\delta l = \xi(t);$ $\xi(t) = \Delta t$ $\delta l = \xi(t);$ $\xi(t) = \Delta t$ $\xi(t) = \Delta t$

$$\xi(t) = A\cos(\Omega t - \alpha) \Rightarrow$$

"сила тока": $J
ightarrow \xi$

$$\delta l \equiv \xi(t); \quad \xi(t) = \mathcal{A}\cos(\Omega t - \alpha)$$


$$\dot{\xi}(t) = -\Omega A \sin(\Omega t - \alpha)$$

амплитуда силы тока $J_0 \sim \Omega$

$$E \sim \ddot{\xi} \sim \Omega^2 \sin \theta$$

вихревое электрическое поле

$$\Rightarrow (E_0 \sim \ddot{\xi} \sim \Omega^2 \sin \theta)$$

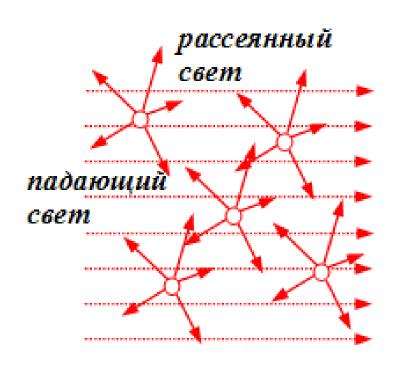
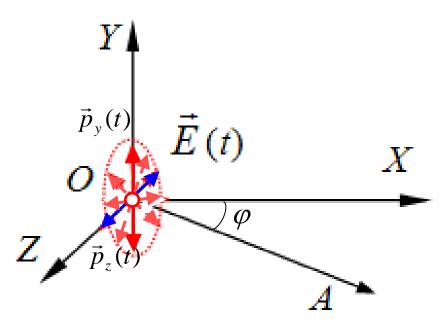


Диаграмма направленности излучения диполя


Длина стрелки ~ интенсивности

5.2. Рассеяние света "мутными средами"

$$I^{\partial unong} \sim \frac{1}{\lambda^4} \cdot \sin^2 \theta \implies \qquad \begin{array}{c} u + m e + c u e +$$

Закон Рэлея:

интенсивность

$$I \sim I_0 \frac{1 + \cos^2 \varphi}{\lambda^4}$$